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The chain of algebraic geometry and topology constructions is mapped on a
structural level that allows one to single out a special class of discrete helicoidal
structures. A structure that belongs to this class is locally periodic, topologically
stable in three-dimensional Euclidean space and corresponds to the bifurcation
domain. Singular points of its bounding minimal surface are related by
transformations determined by symmetries of the second coordination sphere of
the eight-dimensional crystallographic lattice Eg. These points represent cluster
vertices, whose helicoid joining determines the topology and structural
parameters of linear biopolymers. In particular, structural parameters of the
a-helix are determined by the seven-vertex face-to-face joining of tetrahedra
with the Eg non-integer helical axis 40/11 having a rotation angle of 99°, and the
development of its surface coincides with the cylindrical development of the
a-helix. Also, packing models have been created which determine the topology
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1. Introduction

The secondary structure of a protein is largely determined by
rigid covalent bonds in a polypeptide chain and by hydrogen
bonds between its side groups. An important role is also
played by steric interactions of molecules, related to their sizes
and shapes, which impose strong structural limitations on the
positions of molecules in space. Moreover, these interactions
to a large extent determine the packing of molecules into
helices, which are widespread in biological objects (Shulz &
Schirmer, 1979; Finkelstein & Ptitsyn, 2002; Nelson & Cox,
2004). Ordered packings in three-dimensional Euclidean
space E’ are determined by constructions of algebraic
topology (Conway & Sloane, 1999; Dubrovin et al., 2001;
Humphreys, 1975); hence it appears quite reasonable to put
such constructions in correspondence with structures of helical
biopolymers. Such a topological (packing) approach differs
from the metric approach, which is founded based on exact
geometric parameters of molecules and is widespread in
biology (Chothia et al., 1977). For example, in Samoylovich &
Talis (2010) the use of such a construction allowed us to
explain noncrystallographic structural features of certain
crystals. Such constructions have also been used quite widely
to reflect the symmetries of various molecular structures of
biological objects (Monastyrsky, 2006).

Proteins can also be considered as a dense packing of more
or less spherical units, amino acids, approximated by a packing

of the A, B and Z forms of DNA.

of tetrahedra. The densest packing of regular tetrahedra is
achieved in a four-dimensional polyhedron (polytope) {3, 3, 5}
whose substructures (Figs. 1a, 1b) are related to the o-helix as
shown by Sadoc & Rivier (1999) and Sadoc (2001). As is
already known, the «-helix is a realization of the noncrys-
tallographic axis 18/5 proposed by Pauling et al. (1951) with a
rotation angle of 100° = 360°/(18/5). It has subsequently been
shown that hydrogen bonds appear between the ith amide
and (i + 4)th carbonyl groups of residues and stabilize the
a-helix (Shulz & Schirmer, 1979; Finkelstein & Ptitsyn, 2002).
However, even 60 years after the publication of Pauling’s
paper, a symmetry-based justification is still needed for the
fact that there are precisely 3.6 amino-acid residues per turn
in the o-helix. The same problem is also urgent for other
biopolymers. In other words, the crystal is a joining of crys-
tallographic space-group orbits, but which constructions of
algebraic geometry and topology determine the symmetry of
helical biopolymers?

In a general case, the (sub)structure of the biopolymer in
question may be limited by a surface whose singular points are
connected by symmetries of an algebraic polytope. Such a
polytope is generated by a subsystem of the root lattice Es.
The Eg lattice is the octonion lattice closing the series of
possible numbers, i.e. real numbers — complex numbers —
quaternions — octonions (Conway & Sloane, 1999).

A tetrahedron approximating the packing of four amino
acids is a simplex in E°, and the joining of tetrahedra (Fig. 1b)
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Figure 1
(a) A family of tori which are coaxial with the spherical torus. This family fills up the volume of the
three-dimensional sphere S°. The axis of the Boerdijk—Coxeter helix corresponds to the torus axis
in the {3, 3, 5} polytope. (Adapted from Fig. 8 in Mosseri et al., 1985.) (b) The Boerdijk—Coxeter
helix obtained from regular tetrahedra. A simplicial seven-vertex complex of four tetrahedra with
common vertex 1 is shown by black lines. Two such complexes are joined by a connected sum — the
three tetrahedra between them (grey lines). (c) Representation of a cover over a bouquet of the
circle S! and the sphere S? in the form of spheres attached to a screw line. On every sphere a solid
common point with the screw line is shown, corresponding to a point of a manifold on S'. This point
is the common vertex joining two seven-vertex complexes (Fig. 1b). (Adapted from Fig. 103b in
Dubrovin et al., 2001.) (d) The projection of {4, 3, 3} polytope vertices on the catenoid (adapted
from Fig. 9b in Mosseri et al., 1985), which is determined by the family of tori (Fig. 1a). (e) The
transformation of catenoid (Fig. 1d) into helicoid via an intermediate surface (wound over the
catenoid) — joining of catenoid and helicoid surfaces. Trajectories of the generatrix ends are
marked by thick lines. (Adapted from Fig. 26 in Fomenko & Tuzhilin, 1992.)

using polyhedral constructions. A cate-
noid determined by one such surface is
locally isomorphic to a helicoid (Figs. 1d,
le).

In general, the above allows us to
state the existence of a singular chain
of algebraic geometry and topology
constructions: an algebraic polytope
insertable into the second coordination
sphere of the Eg lattice — the locally
minimal surface — one-parameter
family of helicoids — bundle (cover)
with the fibre of cellular (simplicial)
complexes — local-latticed packing of
cell complexes. The existence of such a
chain implies the possibility of realizing
in E* a special class of helicoidal topo-
logically stable structures. Belonging to
this class means biological structures can
avoid the crystalline type of order in E°.

The apparatus of the generalized
crystallography developed in the present
work allows us to determine symmetries
of helicoidal biopolymers by construc-
tions of algebraic geometry and
topology; these constructions define
their assembly from quite a limited
number of ‘blocks’ according to a very
limited number of joining rules. The
present article is devoted to the deduc-
tion of such a construction which deter-
mines a priori the structure parameters
of the a-helix and symmetry parameters
of certain forms of DNA.

2. Locally cylindric approximation
of a rod substructure of a polytope

Each invariant of the root lattice Eg is in
correspondence with a certain disc Dj;
hence construction of an algebraic

determines a simplicial complex (Dubrovin et al., 2001). The polytope is actually determined by the relations

connection between the simplicial (cellular) complex and its

bounding minimal surface in E® is determined by a fibre A=

bundle construction for the three-dimensional sphere S°, in
particular, in the form of a cover over a bouquet ' U S? of the
circle S" and the sphere S* (Fig. 1c). Such a transition from the
sphere $® (containing polytope vertices) is possible only by
selecting on appropriate spheres certain manifolds and alge-
bras characterizing these manifolds (Samoylovich & Talis,
2012a,b, 2013a,b). Polytopes are extrema of the volume
functional, and locally minimal surfaces are also extrema of
the volume functional. All lined minimal surfaces can be
realized as a one-parameter family of helicoids with a pitch as
a parameter (Fomenko & Tuzhilin, 1992). The line-geometric
character of a minimal surface is the significant feature while

Dy xS ~S'US <38, 1)
]

where S' U §%« > S]2 is a cover over a bouquet S' U §* and
the circle S is correlative to a group {exp i} corresponding to
a unitary representation. The sewing (glueing) operation
defined in the cover (1) gives a law for joining the appropriate
discs, and that law realizes an assembly of polyhedra into a
rod. For simplicial (cellular) complexes, (1) can be rendered by
a fibre bundle construction o, for which the base og and the
fibre o are represented by simplicial complexes:

0 Xop X 0p, 002 og % (d0p); )
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the number of vertices of the simplicial complex in the fibre
space equals the product of the number of vertices of the
complexes of the fibre and the base (Fig. 1c¢).

For a minimal surface M, its stability is determined by the
possibility of changing its area by small strains. The stability of
M is characterized by the index Ind M, which correlates to the
number of ways to change the surface area. If this index is not
zero, the surface M is unstable. The instability of the M surface
increases as the Ind M increases, which is equal to 1 for a
catenoid and to oo for a helix (Figs. 1d, 1le). There are well
developed methods to construct complete minimal surfaces,
embedded in E?, by using Weierstrass representations
(Fomenko & Tuzhilin, 1992). Let M be some surface given by
Weierstrass representation and U C C is some subdomain of
the complex plane. The surface M is characterized by Ind M =
0 if the image of the U is in some open submanifold of the §*
sphere (Fomenko & Tuzhilin, 1992). That submanifold can be
defined as a submanifold onto a part of the $* sphere (about
5/6 of the total sphere area) confined between two parallel
planes. Indeed, such planes are separated from the sphere
centre over the distance tht,, where £, is the unique root of the
equation ctht, = ty, and cut off the domain of about 1/6 of the
sphere surface area. For the {12(27-24)} polytope given by
{12(27-24)} vectors of the second coordination sphere of the Eg
lattice (y = 0, 1, 2), the submanifold of its 5/6 vertices defines
the {10(27-24)} or {12(27-20)} polytope. This polytope can be
mapped into polyhedra {27-24}, or {2"-20},, ensuring the
possibility of the existence of a surface with a finite (and
possibly zero) value of Ind M.

It has been shown (Fomenko & Tuzhilin, 1992) that
Weierstrass representations allow one to define a catenoid as
well as a complete helicoid and, in the general case, an asso-
ciated family for some minimal surface M consists of locally
isometric minimal surfaces (incongruent pairwise, as a rule).
At certain conditions one can create a configuration as a
joining of helicoid and catenoid with the summary (total)
radius-vector

r(u, ¢, @) = r|(u, p)cos o + ry(u, ) sin 3)

where ry, r, are radius-vectors describing the catenoid and
helicoid, (u, ¢) are coordinates on the surface and ¢ corre-
sponds to the angle in cylindrical coordinates. The angle @ €
[0, /2] is such that for o = O the surface generatrix becomes a
catenary (chain line) of the catenoid, and for o = 7/2 it
becomes the generatrix of the helicoid (Fomenko & Tuzhilin,
1992).

A helicoid can be represented as infinite-sheeted winding
over a catenoid or sphere without both poles. To describe all
minimal surfaces tightening (spanning) the contour of two
coaxial circles of radius r positioned in two parallel planes
separated by a distance of 4, it is sufficient to define all cate-
noids spanning this contour (Fig. 2a). For some fixed value of
the angle « in (3) it is possible to build a construction that is a
‘sum’ of a catenoid with radius r = cos« and a helicoid with
distance between turns equal to & = 2msin . With decreasing
interturn spacing at a certain value & = h the bifurcation
point arises. The value A, is given by the solution of the

|

N

Figure 2

(a) A closed path consisting of two helices and two closing segments. The
limiting cylinder of the system is shown by thin lines. Decreasing the pitch
of the helix leads to a transformation of a helicoid into a double-helix
helicoidal surface of the catenoid, uniting the mentioned subsystems
(adapted from Fig. 27 in Fomenko & Tuzhilin, 1992). (b) Joining of rods
by helicoidal law. The helical components of the double helix are shown
by thick lines. (Adapted from Kléman, 1989.)

equation cth(A/r) = (h/r) (Fomenko & Tuzhilin, 1992). One can
show that

hy/r =2msina,/cosa, = 2mtana, >~ 27 x 0.382 =~ 2.400,

4)

where o, >~ 20.906°, tan o, = h/2nr >~ 0.382. At h = h, the
single whole configuration arises as a film which is tightening
each of the parallel circles by the flat disc (Fig. 2a). After this
the bifurcation point catenoid, determined by (3), decomposes
into a stable cylinder and an unstable cone. In a bifurcation
point (non-degenerate for a Morse function) a topological
regularity is broken (Dubrovin ef al., 2001); at the same time a
cell structure (considered in Fig. 1c) must appear on the
manifold. Making a significant simplification, we shall assume
that the relation (4) determines the transition from a locally
minimal to a locally cylindrical surface, namely, the surface for
which the neighbourhood of every point is approximated by a
cylindrical surface.

The lattice Eg determines both the {3, 3, 5} and {240}
polytopes where the {240} polytope is the diamond-like joining
of two {3, 3, 5} polytopes (Coxeter, 1930, 1973; Mosseri et al.,
1985) on the three-dimensional sphere S® (Figs. 1a, 1d). The
polytope {240} starts the sequence {g(27-24)}, q is an integer, y
=0, 1, 2, of polytopes (Samoylovich & Talis, 2012a,b, 2013a).
The choice of the origin in a deep hole of the Eg lattice
determines the sequence of coordination spheres of 16, 128,
448 and 1024 vectors (Conway & Sloane, 1999). This allows
one to select a subset of 1152 = 128 + 1024 vectors of the
second coordination sphere Ejg, corresponding to the polytope
{1152} = {12(2%-24)}, whose substructures will be used in the
following.

In the diamond-like {10(2¥-24)} polytope y = 0, 1, 2, the
joining of 2{g} vertices on two neighbouring circles S' forms a
Q chain, similar to a (110) chain in a diamond structure. The
maps of a Q chain into a Q edge of the ‘loaded’ polyhedron
{27.24}, we shall denote by a two-headed arrow in Figs. 3(a—c).
By these maps a three-dimensional rod substructure K of
a diamond-like polytope corresponds to a face of the poly-
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Figure 3

(a) A 24-vertex truncated octahedron with six square and eight hexagonal faces; the centres of 12
non-intersecting arrowed edges (cuboctahedron vertices) are shown as light dots. (b) A 48-vertex
truncated cuboctahedron with 24 non-intersecting arrowed edges; the centres of 12 squares are
shown as light dots. Square vertices are the arrow ends. (¢) A 96-vertex simple polyhedron with 5-, 6-
and 7-gons and 48 non-intersecting arrowed edges. Alternating 5- and 7-gons, denoted as light and
dark shaded, form an equatorial belt; light dots denote the centres of 12 edges, each of which is
common for two 5-gons. (d), (e), (f) Channels 30/11, 40/9 (adapted from Figs. 16a and 17 in Mosseri et
al., 1985) and 40/11, as joining of (110) diamond-like chains which correspond to hexagonal, square
and octagonal faces, respectively, of the polyhedron in Fig. 3(b). Chains of hexacycles are shown by

thick lines.

hedron {2”-24},. A diamond-like polytope {240} is determined
by the relations (30/11)* = —(40/9)* = (10/1)" between motions
in E*, possessing rotational components (in one of two planes)
by 132°, 81° and 36°, respectively. With mapping onto a sphere
it corresponds to a joining of eight 30/11 channels, while six
40/9 channels appear in the interstices between the 30/11
channels (Fig. 3a). For a surface M, given by a Weierstrass
representation (C, fdw, g), the index Ind M is finite provided
that the function g is irrational (Fomenko & Tuzhilin, 1992).
The symmetries 30/11 and 40/9 (Figs. 3d, 3e) are in corre-
spondence with such functions (Samoylovich & Talis, 2007);
hence, the minimal surfaces relevant to such non-integer axes
will possess finite Ind M and in some degree topological
stability. The {10(2-24)} polytope is next to the {240} polytope
in the series, determined by the polyhedron {2-24}, (Fig. 3b),
and is characterized by the relations

(30/11)° = (40/11)* = —(40/9)* = (10/1)", (5)

corresponding to appropriate rods (Figs. 3d, 3e, 3f). The
negative sign denotes the different axis chirality.

The surface of the channel K in the neighbourhood of a
point may be viewed as cylindrical; hence the homogeneity of
a parametric description of a curve positioned on that surface
permits a cylindrical approximation of the construction
considered. In this case the centres of cell complexes (clusters)
form a system of points on a helix, which may correspond to a

two-dimensional lattice on the flat
development of a cylinder, determined
by one of the axes L/p of Gosset’s
helicoids:

L/p=2"-81,/4km,,  (6)

where 27-81, and 81, are the number of
vertices from the second or the first
coordination spheres of the lattice FEg;
y=0,1,2 I, I, = kj(m;;, + 1) are
invariants of Eg, k;; are integers, m; is
the index of a lattice embedded in
Eg (Samoylovich & Talis, 2007, 2008,
2009). The value L/p, where p is a
prime or some power of it, corresponds
to an exponential representation
exp 2mip/L or one-parameter subgroup
of the symmetry group of a polytope.
Thus, non-integer L/p axes (actually

o defined as one-parameter transforma-

tions) give the symmetries of discrete
systems considered as homogeneous
spaces represented by polytopes.
Really, the transition (1) from the
polytope onto S° to the discrete system
as a cover over the union of spheres
S' U S§* forces a certain algebraic
construction with p elements on S
Since the polytope is a four-
dimensional object, these constructions
must be relevant to the four-dimensional root lattices with the
largest exponent being equal to 11 (for the F, system having
roots corresponding to the roots of the first and second
coordination spheres of the D, lattice). The last thesis should
bring to addition the intermediate conditions in the form of
(exp 27/p)’ = 1, thus permitting the realization of a periodicity.

According to Samoylovich & Talis (2012a,b, 2013a,b), the
channel of the K type can be approximated by the orbit of a
screw axis with a rotation angle of 2np/L and a shift by the
vector & along the axis in the case where the channel is formed
by Q chains of the same type. This channel may determine a
topologically stable (with some finite Ind M) helicoidal
structure €2 which satisfies the relations

Q «— (L/p| Ah(r(u, o, )2{q} < {q(2" - 24)} < E;,  (7)

where A is an integer, y =0, 1, 2. According to (4), for r(u, ¢, o)
=~ h/(2.400) the radius determined by (3) represents the radius
of a cylindrical surface, into which € can be mapped. The
angle of rotation of the L/p axis depends only on invariants of
Eg; for instance, substituting in (6) 1, = 20, k;; =2, m;; =11,y =
1 determines the axis 40/11. At the same time the local-lattice
property is mapped depending on the direction of the rotation
axis, as well as the magnitude 4 from the value r(u, ¢, ).
An element of the crystallographic space group is deter-
mined by the relation (7) in the limiting case L/p =n,n=1, 2,
3,4,6,and h = t/n, where t is a lattice vector D5 (face-centred
cubic lattice) or hexagonal lattice A, x A;. The lattice D5 is
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Figure 4

(a) A hexagonal network with the marked strip having a width of six unit
edges of a hexagon; the white circles are the centres of regular hexagons.
The white lines, where the centres of hexagons are positioned, constitute
the flat development of a helix with a pitch H ~ 2(3"%) (double hexagon
height) and a radius R. The black lines within the strip of length 27r >~
4.54 represent the flat development of a helix with a pitch # = H/2. There
are 40/11 black circles for every turn of the helix. (b) The dark-grey circles
are centres of hexagons of the locally transformed hexagonal lattice,
between which the dark-grey triangles are situated. They are the common
vertices of pairs of light-grey triangles, the midpoints of whose edges
contain light-grey and grey circles. The lines joining the light-grey and
grey circles of adjacent chains contain white and black circles. The union
of the circles nearest to each other determines the flat development of an
a-helix, whose 13 consecutive vertices are marked by numbers.

embedded in the four-dimensional lattice D,, from which
the system G, can be obtained by quasi-decomposability
(Humphreys, 1975), the said system G, is determined by the
first and second coordination spheres of the hexagonal lattice
A,. For instance, for L/p =4, A =1, h(r(u, ¢, @)) = H = 2(3"?)
and r = 3/m the cylindrical approximation 2 represents a
helicoidal strip of regular hexagons sharing common edges
(where the edge length is equal to 1), which includes half the
hexagons of the flat development of a cylinder (Fig. 4a). The
relation h/r >~ 2.400 for such a helix is achieved only if it is
turned into a helix 40/11 satisfying (7). In this case a helix with
L/p = 40/11 is realized for A =2 and a radius decreasing to the
value r 2~ 0.722, which gives the value & = 3% ~2.400 x 0.72
(Fig. 4a).

3. Symmetry parameters of the a-helix in the
frameworks of algebraic geometry

The conformation of the a-helix (Fig. 5a) is stable; hence all
the above (with certain limitations) may be used for its
cylindrical approximation, in which the centres of congruent
elements of the packing coincide with the positions of C,
atoms. Generally accepted data concerning the structure of
the a-helix (Finkelstein & Ptitsyn, 2002; Nelson & Cox, 2004)
allow one to assume that L residues are equally distributed
both over p turns of the ‘main’ helix, as well as over four
helices, which we will call i-helices, i = 1, 2, 3, 4. Each of the
i-helices corresponds to a linear substructure of hydrogen
bonds; hence a cylindrical approximation of an a-helix (Figs.

5b, 5¢) may be considered as a result of multiplication by a
screw axis L/p of a starting i-helix of L/4 residues.

A non-integer axis, giving the experimental 3.6 residues per
turn, is the axis L/p = 18/5. Because 18 is not divisible by 4,
one must take a combined 36/10 helix consisting of two 18/5
helices (Fig. 5b) in order to obtain four i-helices with the same
rotation angle. A non-composite axis of the form L/p, closest
to 36/10, which can be obtained by adding four residues by
turn, is the axis 40/11 = (36 + 4)/(10 + 1). That axis with helical
rotations by 99° maps four i-helices onto each other (Fig. 5¢).
Here each i-helix contains ten residues. In contrast to 36/10,
the axis 40/11 is expressed by a periodic decimal fraction and
corresponds to the symmetry of the {10(2-24)} polytope (Figs.
3b, 3f), defined by the relation (5). The relation (5) implies
that the orbit of the axis 40/11 is the union of the four orbits of
the axis 10/1 (it is approximated by an axis close to the screw
axis 10;), which is also a relation between axes of the cylind-
rical approximation of the a-helix. The helix 40/11, ensuring
the existence of the four i-helices, is followed by the helix 44/12
= (40 + 4)/(11 + 1), which is the quadruple of the helix 11/3
(Fig. 5b). It is exactly 11/3 that corresponds to the average
length of observed a-helices in globular proteins (Shulz &
Schirmer, 1979). The one closest to 44/12 is the helix 45/12,
which is a triple helix 15/4 with rotation by 96°.

The observed lengths of «-helices show relative maxima at
7, 11 and 15 residue lengths, thus corresponding to two, three
and four turns (Shulz & Schirmer, 1979). They can be viewed
as a result of separation of 40 =7 + 7 + 11 + 15 vertices of the
helix 40/11 = 3.63(63), into cycles, situated on two, two, three
and four turns. The substructures, put into correspondence
with such cycles, may be characterized by axes 7/2, 7/2, 11/3
and 15/4. An arithmetic mean of these axes is the experi-
mentally observed 18/5 axis, and its correspondence with the
40/11 axis:

(7/247/2 + 11/3 + 15/4)/4 = 3.60416(6) — 18/5,
(7+74114+15)/(2 42+ 3 +4) = 3.63(63) — 40/11.  (8)

Thus, relationships (8) connect the experimentally observed
18/5 axis of the a-helix (Pauling et al., 1951) with the 40/11 axis
of the ideal (mathematical) a-helix (rotation angles are 100
and 99°, respectively).

A distribution of residues in an a-helix into 11 turns and
local inserting of the {10(2-24)} polytope into the Ejy lattice
allows the suggestion of an availability of the symmetrical
construction which can define these conditions. As it happens,
such a construction is the 2-(11, 5, 2) scheme of block design or
biplane (Kostant, 1995; Brown, 2004): 11 numbers from 0 up to
10 are subdivided on blocks by five numbers in each (below,
the number 10 is denoted by the roman numeral X). The
blocks are selected in such a way that each number belongs to
five blocks, each pair of numbers to two blocks, and every
collection of four numbers to one block only. An auto-
morphism group (of order 660) of the biplane is the group
PSL,(11), a limiting group of four special groups PSL,(p),
p =3,5,7,11 determined by Galois (Conway & Sloane, 1999;
Kostant, 1995; Brown, 2004).
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Let us distribute 11 blocks of biplane so that the 55 numbers
contained in them form a matrix B of 11 rows and five
columns, presented in Fig. 5(d). In the first column
1,2,3...9, X, 0 form the sequence of positive integers which
are indexing 11 rows. After skipping the first column there
remains the W matrix of size 11 x 4. The third, sixth, ninth and
Oth rows of the W matrix contain the number 1, its skipping
leaves these rows with three numbers in each and distributes
40 elements of the W(a, b) matrix into 11 rows. These 40
elements W(a, b),a=1,2,...,X,0;b=1,2, 3, 4 are distrib-
uted between four W, subsets of the matrix (ten for each):

through atoms corresponding to these common pairs of
numbers.

The helix 10/1 is common to the channels 40/11 and 30/11
[determined by (5)], which is possible if they are both defined
according to the same law. In fact, by analogy with the defi-
nition of the cylindrical flat development 40/11 from the
biplane B, the flat development for 30/11 may be obtained
from B by skipping the first two columns and three unities 1 in
the remaining columns. At that, the remaining 30 = 55 — 2 x
11 — 3 numbers may also be distributed into three ten-element
subsets of the form (9).

W, => W(n+3m-3,,),
(i +m) (mod 4)), 9)

where (n+3m —3§,;) is the row
number, and (i +m) (mod 4) is the
column number in the W matrix, i = 1,
2,3,4n=1,23m=0,1,2,3;6,3=1
for m =3 and 0 for m # 3 (Fig. 5d). The
rows of the W matrix are in one-to-one
correspondence with the turns of the
cylindrical plane development of the
helix 40/11, and i-sets (9) to i-helices, i
=1, 2, 3, 4 (Figs. 5c, 5d); therefore, at a
combinatorial level (without metrics)
the substructure W of a biplane B may
be identified with a flat development
of a cylindrical approximation of an
a-helix.

In fact, in the biplane any four or
three numbers belong to just the given
block; therefore, the presence of three
or four numbers in any row of the
matrix 11 x 4 (and, therefore, the
number of C, atoms in a turn) is stable
in the combinatorial sense. The
skipped unit numbers subdivide 11
rows of the matrix W into superblocks:
11 =3+ 3 + 3 + 2; at the same time, in a
superblock of three rows there will be
11 numbers (11 residues by three
turns), which correspond to the already
mentioned median length 17 A for
observed lengths of «-helices in glob-
ular proteins. Without the three top
block ones, there are 30 numbers in the
eight remaining rows of the W matrix,
thus corresponding to the 30/8 = 15/4
axis. Within a superblock there are no
intersections of rows by two numbers,
which ensures its combinatorial stabi-
lity. At the same time, rows from two
different superblocks intersect by two
numbers, which allows one to consider
the possibility of glueing an «a-helix

B0 ‘ .
%?a'@;

AV,

021

9X 6

59¢

8§71

730

\/

R
Q9
(%
)

6 5'X

Ay
\ /
)
A/

v,
A
\ /
9
s

"V,
\/
A
e
Z\
(AN

"
s

=1 i=2 i¥3 =
(®) ()

=1 i=2 =3 i~

Figure 5

(a) The structure of an a-helix, pendant groups are designated by the letter R, hydrogen bonds are
shown by a dotted line (adapted from Fig. 7-5 in Finkelstein & Ptitsyn, 2002). Dark-grey, grey, light-
grey, white and black balls represent, respectively, C,, C', N, O and H atoms in the packing. (b) The
development of a locally cylindrical approximation of the o-helix having the 36/10 axis shown in Fig.
5(a). Forty-four C, atoms are disposed on 12 turns designated by roman numerals. Atoms with equal
numbers are identified. Each turn designated by the thick line contains three atoms, each of the
remaining turns contains four atoms. Atoms 7 and i + 4 belong to one of the four dotted straight i
lines, i = 1, 2, 3, 4 (taking into account for identifying the vertical edges of the stripe). (¢) The
development of a locally cylindrical approximation of the «-helix having a 40/11 axis. The
development is inserted into the lattice with basic vectors e; and e, and the sublattice with basic
vectors V; and V. (d) Biplane 2-(11, 5, 2) as the matrix 11 x 5 with 11 lines by five numbers in each
line. The first column of biplane numbers is the number of turns on the development in Fig. 5(c).
Skipping 1 out of the matrix corresponds to the distribution of C, atoms over turns and i straight lines
in Fig. 5(¢), i lines are marked as thick, thin, dashed and dotted ones. The numbers corresponding to
straight lines i = 1, 2, 3, 4 are shown as bold, primed, underlined and italic, respectively.
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4. The a-helix is the structure determined by the helical
joining of tetrahedra

In addition to the helical 18/5 rotation (close to 40/11), basic
parameters characterizing the structure of an a-helix are (in
A): pitch 4 = 5.4 and radius r = 2.3 (Shulz & Schirmer, 1979).
The relation i/r 2~ 2.349 satisfies the condition (4), confirming
the necessity of application of the formalism being developed
here in order to derive structural parameters of the «-helix.

Let us put the origin of coordinates (0, 0) into a point v, of
the plane development of a cylindrical approximation of the
a-helix (Fig. 5¢). According to (7), the point v, is connected to
the point v, via the vector V; with coordinates 2mr/(40/11),
h/(40/11), and v, is connected to vs by the vector V, with
coordinates 27r/10, 4(h/(40/11)). The angle x between those
vectors is determined by the relation

cos x = (1 + (10C/(11 4+ C*))) ', (10)

where C =2m/c., = ctan &, cor = h/r >~ 2.400 in accordance with
(4). For ¢ ~ 2.46 ~ 6" one obtains for the vector length the
relationship V, = (3/2)V,, thus permitting us to define the
vectors with the same length e, = (1/2)V; and e, = (1/3)V, and
the angle x =~ 55° between them. Considering the vectors e,
and e, as the basis, it is possible to construct a lattice {eq, e,},
which will contain a sublattice {V,, V,} with basis vectors V;
and V,. For h = 5.4 A the strip {V,, V.}, of the lattice {V, V)
almost coincides wi