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The chain of algebraic geometry and topology constructions is mapped on a

structural level that allows one to single out a special class of discrete helicoidal

structures. A structure that belongs to this class is locally periodic, topologically

stable in three-dimensional Euclidean space and corresponds to the bifurcation

domain. Singular points of its bounding minimal surface are related by

transformations determined by symmetries of the second coordination sphere of

the eight-dimensional crystallographic lattice E8. These points represent cluster

vertices, whose helicoid joining determines the topology and structural

parameters of linear biopolymers. In particular, structural parameters of the

�-helix are determined by the seven-vertex face-to-face joining of tetrahedra

with the E8 non-integer helical axis 40/11 having a rotation angle of 99�, and the

development of its surface coincides with the cylindrical development of the

�-helix. Also, packing models have been created which determine the topology

of the A, B and Z forms of DNA.

1. Introduction

The secondary structure of a protein is largely determined by

rigid covalent bonds in a polypeptide chain and by hydrogen

bonds between its side groups. An important role is also

played by steric interactions of molecules, related to their sizes

and shapes, which impose strong structural limitations on the

positions of molecules in space. Moreover, these interactions

to a large extent determine the packing of molecules into

helices, which are widespread in biological objects (Shulz &

Schirmer, 1979; Finkelstein & Ptitsyn, 2002; Nelson & Cox,

2004). Ordered packings in three-dimensional Euclidean

space E3 are determined by constructions of algebraic

topology (Conway & Sloane, 1999; Dubrovin et al., 2001;

Humphreys, 1975); hence it appears quite reasonable to put

such constructions in correspondence with structures of helical

biopolymers. Such a topological (packing) approach differs

from the metric approach, which is founded based on exact

geometric parameters of molecules and is widespread in

biology (Chothia et al., 1977). For example, in Samoylovich &

Talis (2010) the use of such a construction allowed us to

explain noncrystallographic structural features of certain

crystals. Such constructions have also been used quite widely

to reflect the symmetries of various molecular structures of

biological objects (Monastyrsky, 2006).

Proteins can also be considered as a dense packing of more

or less spherical units, amino acids, approximated by a packing

of tetrahedra. The densest packing of regular tetrahedra is

achieved in a four-dimensional polyhedron (polytope) {3, 3, 5}

whose substructures (Figs. 1a, 1b) are related to the �-helix as

shown by Sadoc & Rivier (1999) and Sadoc (2001). As is

already known, the �-helix is a realization of the noncrys-

tallographic axis 18/5 proposed by Pauling et al. (1951) with a

rotation angle of 100� = 360�/(18/5). It has subsequently been

shown that hydrogen bonds appear between the ith amide

and (i + 4)th carbonyl groups of residues and stabilize the

�-helix (Shulz & Schirmer, 1979; Finkelstein & Ptitsyn, 2002).

However, even 60 years after the publication of Pauling’s

paper, a symmetry-based justification is still needed for the

fact that there are precisely 3.6 amino-acid residues per turn

in the �-helix. The same problem is also urgent for other

biopolymers. In other words, the crystal is a joining of crys-

tallographic space-group orbits, but which constructions of

algebraic geometry and topology determine the symmetry of

helical biopolymers?

In a general case, the (sub)structure of the biopolymer in

question may be limited by a surface whose singular points are

connected by symmetries of an algebraic polytope. Such a

polytope is generated by a subsystem of the root lattice E8.

The E8 lattice is the octonion lattice closing the series of

possible numbers, i.e. real numbers – complex numbers –

quaternions – octonions (Conway & Sloane, 1999).

A tetrahedron approximating the packing of four amino

acids is a simplex in E3, and the joining of tetrahedra (Fig. 1b)
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determines a simplicial complex (Dubrovin et al., 2001). The

connection between the simplicial (cellular) complex and its

bounding minimal surface in E3 is determined by a fibre

bundle construction for the three-dimensional sphere S3, in

particular, in the form of a cover over a bouquet S1
[ S2 of the

circle S1 and the sphere S2 (Fig. 1c). Such a transition from the

sphere S3 (containing polytope vertices) is possible only by

selecting on appropriate spheres certain manifolds and alge-

bras characterizing these manifolds (Samoylovich & Talis,

2012a,b, 2013a,b). Polytopes are extrema of the volume

functional, and locally minimal surfaces are also extrema of

the volume functional. All lined minimal surfaces can be

realized as a one-parameter family of helicoids with a pitch as

a parameter (Fomenko & Tuzhilin, 1992). The line-geometric

character of a minimal surface is the significant feature while

using polyhedral constructions. A cate-

noid determined by one such surface is

locally isomorphic to a helicoid (Figs. 1d,

1e).

In general, the above allows us to

state the existence of a singular chain

of algebraic geometry and topology

constructions: an algebraic polytope

insertable into the second coordination

sphere of the E8 lattice ! the locally

minimal surface ! one-parameter

family of helicoids ! bundle (cover)

with the fibre of cellular (simplicial)

complexes ! local-latticed packing of

cell complexes. The existence of such a

chain implies the possibility of realizing

in E3 a special class of helicoidal topo-

logically stable structures. Belonging to

this class means biological structures can

avoid the crystalline type of order in E3.

The apparatus of the generalized

crystallography developed in the present

work allows us to determine symmetries

of helicoidal biopolymers by construc-

tions of algebraic geometry and

topology; these constructions define

their assembly from quite a limited

number of ‘blocks’ according to a very

limited number of joining rules. The

present article is devoted to the deduc-

tion of such a construction which deter-

mines a priori the structure parameters

of the �-helix and symmetry parameters

of certain forms of DNA.

2. Locally cylindric approximation
of a rod substructure of a polytope

Each invariant of the root lattice E8 is in

correspondence with a certain disc D2
0;

hence construction of an algebraic

polytope is actually determined by the relations

S3
ffi D2

0 � S1
� S1
[ S2
 
P

j

S2
j ; ð1Þ

where S1
[ S2
 

P
j S2

j is a cover over a bouquet S1
[ S2 and

the circle S1 is correlative to a group {exp i’} corresponding to

a unitary representation. The sewing (glueing) operation

defined in the cover (1) gives a law for joining the appropriate

discs, and that law realizes an assembly of polyhedra into a

rod. For simplicial (cellular) complexes, (1) can be rendered by

a fibre bundle construction �, for which the base �B and the

fibre �F are represented by simplicial complexes:

� ffi �B � �F; @� ffi �B � ð@�FÞ; ð2Þ
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Figure 1
(a) A family of tori which are coaxial with the spherical torus. This family fills up the volume of the
three-dimensional sphere S3. The axis of the Boerdijk–Coxeter helix corresponds to the torus axis
in the {3, 3, 5} polytope. (Adapted from Fig. 8 in Mosseri et al., 1985.) (b) The Boerdijk–Coxeter
helix obtained from regular tetrahedra. A simplicial seven-vertex complex of four tetrahedra with
common vertex 1 is shown by black lines. Two such complexes are joined by a connected sum – the
three tetrahedra between them (grey lines). (c) Representation of a cover over a bouquet of the
circle S1 and the sphere S2 in the form of spheres attached to a screw line. On every sphere a solid
common point with the screw line is shown, corresponding to a point of a manifold on S1. This point
is the common vertex joining two seven-vertex complexes (Fig. 1b). (Adapted from Fig. 103b in
Dubrovin et al., 2001.) (d) The projection of {4, 3, 3} polytope vertices on the catenoid (adapted
from Fig. 9b in Mosseri et al., 1985), which is determined by the family of tori (Fig. 1a). (e) The
transformation of catenoid (Fig. 1d) into helicoid via an intermediate surface (wound over the
catenoid) – joining of catenoid and helicoid surfaces. Trajectories of the generatrix ends are
marked by thick lines. (Adapted from Fig. 26 in Fomenko & Tuzhilin, 1992.)



the number of vertices of the simplicial complex in the fibre

space equals the product of the number of vertices of the

complexes of the fibre and the base (Fig. 1c).

For a minimal surface M, its stability is determined by the

possibility of changing its area by small strains. The stability of

M is characterized by the index Ind M, which correlates to the

number of ways to change the surface area. If this index is not

zero, the surface M is unstable. The instability of the M surface

increases as the Ind M increases, which is equal to 1 for a

catenoid and to 1 for a helix (Figs. 1d, 1e). There are well

developed methods to construct complete minimal surfaces,

embedded in E3, by using Weierstrass representations

(Fomenko & Tuzhilin, 1992). Let M be some surface given by

Weierstrass representation and U � C is some subdomain of

the complex plane. The surface M is characterized by Ind M =

0 if the image of the U is in some open submanifold of the S2

sphere (Fomenko & Tuzhilin, 1992). That submanifold can be

defined as a submanifold onto a part of the S2 sphere (about

5/6 of the total sphere area) confined between two parallel

planes. Indeed, such planes are separated from the sphere

centre over the distance tht0, where t0 is the unique root of the

equation ctht0 = t0, and cut off the domain of about 1/6 of the

sphere surface area. For the {12(2��24)} polytope given by

{12(2��24)} vectors of the second coordination sphere of the E8

lattice (� = 0, 1, 2), the submanifold of its 5/6 vertices defines

the {10(2��24)} or {12(2��20)} polytope. This polytope can be

mapped into polyhedra {2��24}q or {2��20}q, ensuring the

possibility of the existence of a surface with a finite (and

possibly zero) value of Ind M.

It has been shown (Fomenko & Tuzhilin, 1992) that

Weierstrass representations allow one to define a catenoid as

well as a complete helicoid and, in the general case, an asso-

ciated family for some minimal surface M consists of locally

isometric minimal surfaces (incongruent pairwise, as a rule).

At certain conditions one can create a configuration as a

joining of helicoid and catenoid with the summary (total)

radius-vector

rðu; ’; �Þ ¼ r1ðu; ’Þ cos �þ r2ðu; ’Þ sin �; ð3Þ

where r1, r2 are radius-vectors describing the catenoid and

helicoid, (u, ’) are coordinates on the surface and ’ corre-

sponds to the angle in cylindrical coordinates. The angle � 2
[0, �/2] is such that for � = 0 the surface generatrix becomes a

catenary (chain line) of the catenoid, and for � = �/2 it

becomes the generatrix of the helicoid (Fomenko & Tuzhilin,

1992).

A helicoid can be represented as infinite-sheeted winding

over a catenoid or sphere without both poles. To describe all

minimal surfaces tightening (spanning) the contour of two

coaxial circles of radius r positioned in two parallel planes

separated by a distance of h, it is sufficient to define all cate-

noids spanning this contour (Fig. 2a). For some fixed value of

the angle � in (3) it is possible to build a construction that is a

‘sum’ of a catenoid with radius r = cos � and a helicoid with

distance between turns equal to h = 2�sin �. With decreasing

interturn spacing at a certain value h = hcr the bifurcation

point arises. The value hcr is given by the solution of the

equation cth(h/r) = (h/r) (Fomenko & Tuzhilin, 1992). One can

show that

hcr=r ¼ 2� sin �cr= cos �cr ¼ 2� tan �cr ’ 2�� 0:382 ’ 2:400;

ð4Þ

where �cr ’ 20.906�, tan �cr = hcr/2�r ’ 0.382. At h = hcr the

single whole configuration arises as a film which is tightening

each of the parallel circles by the flat disc (Fig. 2a). After this

the bifurcation point catenoid, determined by (3), decomposes

into a stable cylinder and an unstable cone. In a bifurcation

point (non-degenerate for a Morse function) a topological

regularity is broken (Dubrovin et al., 2001); at the same time a

cell structure (considered in Fig. 1c) must appear on the

manifold. Making a significant simplification, we shall assume

that the relation (4) determines the transition from a locally

minimal to a locally cylindrical surface, namely, the surface for

which the neighbourhood of every point is approximated by a

cylindrical surface.

The lattice E8 determines both the {3, 3, 5} and {240}

polytopes where the {240} polytope is the diamond-like joining

of two {3, 3, 5} polytopes (Coxeter, 1930, 1973; Mosseri et al.,

1985) on the three-dimensional sphere S3 (Figs. 1a, 1d). The

polytope {240} starts the sequence {q(2��24)}, q is an integer, �
= 0, 1, 2, of polytopes (Samoylovich & Talis, 2012a,b, 2013a).

The choice of the origin in a deep hole of the E8 lattice

determines the sequence of coordination spheres of 16, 128,

448 and 1024 vectors (Conway & Sloane, 1999). This allows

one to select a subset of 1152 = 128 + 1024 vectors of the

second coordination sphere E8, corresponding to the polytope

{1152} = {12(22
�24)}, whose substructures will be used in the

following.

In the diamond-like {10(2��24)} polytope � = 0, 1, 2, the

joining of 2{q} vertices on two neighbouring circles S1 forms a

Q chain, similar to a h110i chain in a diamond structure. The

maps of a Q chain into a Q edge of the ‘loaded’ polyhedron

{2��24}q we shall denote by a two-headed arrow in Figs. 3(a–c).

By these maps a three-dimensional rod substructure K of

a diamond-like polytope corresponds to a face of the poly-
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Figure 2
(a) A closed path consisting of two helices and two closing segments. The
limiting cylinder of the system is shown by thin lines. Decreasing the pitch
of the helix leads to a transformation of a helicoid into a double-helix
helicoidal surface of the catenoid, uniting the mentioned subsystems
(adapted from Fig. 27 in Fomenko & Tuzhilin, 1992). (b) Joining of rods
by helicoidal law. The helical components of the double helix are shown
by thick lines. (Adapted from Kléman, 1989.)



hedron {2��24}q. A diamond-like polytope {240} is determined

by the relations (30/11)3 =	(40/9)4 = (10/1)1 between motions

in E4, possessing rotational components (in one of two planes)

by 132�, 81� and 36�, respectively. With mapping onto a sphere

it corresponds to a joining of eight 30/11 channels, while six

40/9 channels appear in the interstices between the 30/11

channels (Fig. 3a). For a surface M, given by a Weierstrass

representation (C, fdw, g), the index Ind M is finite provided

that the function g is irrational (Fomenko & Tuzhilin, 1992).

The symmetries 30/11 and 40/9 (Figs. 3d, 3e) are in corre-

spondence with such functions (Samoylovich & Talis, 2007);

hence, the minimal surfaces relevant to such non-integer axes

will possess finite Ind M and in some degree topological

stability. The {10(2�24)} polytope is next to the {240} polytope

in the series, determined by the polyhedron {2�24}q (Fig. 3b),

and is characterized by the relations

ð30=11Þ3 ¼ ð40=11Þ4 ¼ 	ð40=9Þ4 ¼ ð10=1Þ1; ð5Þ

corresponding to appropriate rods (Figs. 3d, 3e, 3f). The

negative sign denotes the different axis chirality.

The surface of the channel K in the neighbourhood of a

point may be viewed as cylindrical; hence the homogeneity of

a parametric description of a curve positioned on that surface

permits a cylindrical approximation of the construction

considered. In this case the centres of cell complexes (clusters)

form a system of points on a helix, which may correspond to a

two-dimensional lattice on the flat

development of a cylinder, determined

by one of the axes L/p of Gosset’s

helicoids:

L=p ¼ 2� � 8In=4kjsmjs; ð6Þ

where 2��8In and 8In are the number of

vertices from the second or the first

coordination spheres of the lattice E8;

� = 0, 1, 2; In, Is = kjs(mjs + 1) are

invariants of E8, kjs are integers, mjs is

the index of a lattice embedded in

E8 (Samoylovich & Talis, 2007, 2008,

2009). The value L/p, where p is a

prime or some power of it, corresponds

to an exponential representation

exp 2�ip/L or one-parameter subgroup

of the symmetry group of a polytope.

Thus, non-integer L/p axes (actually

defined as one-parameter transforma-

tions) give the symmetries of discrete

systems considered as homogeneous

spaces represented by polytopes.

Really, the transition (1) from the

polytope onto S3 to the discrete system

as a cover over the union of spheres

S1
[ S2 forces a certain algebraic

construction with p elements on S1.

Since the polytope is a four-

dimensional object, these constructions

must be relevant to the four-dimensional root lattices with the

largest exponent being equal to 11 (for the F4 system having

roots corresponding to the roots of the first and second

coordination spheres of the D4 lattice). The last thesis should

bring to addition the intermediate conditions in the form of

(exp 2�/p)p = 1, thus permitting the realization of a periodicity.

According to Samoylovich & Talis (2012a,b, 2013a,b), the

channel of the K type can be approximated by the orbit of a

screw axis with a rotation angle of 2�p/L and a shift by the

vector h along the axis in the case where the channel is formed

by Q chains of the same type. This channel may determine a

topologically stable (with some finite Ind M) helicoidal

structure � which satisfies the relations

� hL=pj �hðrðu; ’; �ÞÞi2fqg  fqð2� � 24Þg  E8; ð7Þ

where � is an integer, � = 0, 1, 2. According to (4), for r(u, ’, �)

’ h/(2.400) the radius determined by (3) represents the radius

of a cylindrical surface, into which � can be mapped. The

angle of rotation of the L/p axis depends only on invariants of

E8; for instance, substituting in (6) In = 20, kjs = 2, mjs = 11, � =

1 determines the axis 40/11. At the same time the local-lattice

property is mapped depending on the direction of the rotation

axis, as well as the magnitude h from the value r(u, ’, �).

An element of the crystallographic space group is deter-

mined by the relation (7) in the limiting case L/p = n, n = 1, 2,

3, 4, 6, and h ¼ t=n, where t is a lattice vector D3 (face-centred

cubic lattice) or hexagonal lattice A2 � A1. The lattice D3 is
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Figure 3
(a) A 24-vertex truncated octahedron with six square and eight hexagonal faces; the centres of 12
non-intersecting arrowed edges (cuboctahedron vertices) are shown as light dots. (b) A 48-vertex
truncated cuboctahedron with 24 non-intersecting arrowed edges; the centres of 12 squares are
shown as light dots. Square vertices are the arrow ends. (c) A 96-vertex simple polyhedron with 5-, 6-
and 7-gons and 48 non-intersecting arrowed edges. Alternating 5- and 7-gons, denoted as light and
dark shaded, form an equatorial belt; light dots denote the centres of 12 edges, each of which is
common for two 5-gons. (d), (e), (f) Channels 30/11, 40/9 (adapted from Figs. 16a and 17 in Mosseri et
al., 1985) and 40/11, as joining of h110i diamond-like chains which correspond to hexagonal, square
and octagonal faces, respectively, of the polyhedron in Fig. 3(b). Chains of hexacycles are shown by
thick lines.



embedded in the four-dimensional lattice D4, from which

the system G2 can be obtained by quasi-decomposability

(Humphreys, 1975), the said system G2 is determined by the

first and second coordination spheres of the hexagonal lattice

A2. For instance, for L/p = 4, � = 1, h(r(u, ’, �)) = H = 2(31/2)

and r = 3/� the cylindrical approximation � represents a

helicoidal strip of regular hexagons sharing common edges

(where the edge length is equal to 1), which includes half the

hexagons of the flat development of a cylinder (Fig. 4a). The

relation h=r ’ 2.400 for such a helix is achieved only if it is

turned into a helix 40/11 satisfying (7). In this case a helix with

L/p = 40/11 is realized for � = 2 and a radius decreasing to the

value r ’ 0.722, which gives the value h = 31/2
’ 2.400 � 0.72

(Fig. 4a).

3. Symmetry parameters of the a-helix in the
frameworks of algebraic geometry

The conformation of the �-helix (Fig. 5a) is stable; hence all

the above (with certain limitations) may be used for its

cylindrical approximation, in which the centres of congruent

elements of the packing coincide with the positions of C�
atoms. Generally accepted data concerning the structure of

the �-helix (Finkelstein & Ptitsyn, 2002; Nelson & Cox, 2004)

allow one to assume that L residues are equally distributed

both over p turns of the ‘main’ helix, as well as over four

helices, which we will call i-helices, i = 1, 2, 3, 4. Each of the

i-helices corresponds to a linear substructure of hydrogen

bonds; hence a cylindrical approximation of an �-helix (Figs.

5b, 5c) may be considered as a result of multiplication by a

screw axis L=p of a starting i-helix of L/4 residues.

A non-integer axis, giving the experimental 3.6 residues per

turn, is the axis L=p = 18/5. Because 18 is not divisible by 4,

one must take a combined 36/10 helix consisting of two 18/5

helices (Fig. 5b) in order to obtain four i-helices with the same

rotation angle. A non-composite axis of the form L=p, closest

to 36/10, which can be obtained by adding four residues by

turn, is the axis 40/11 = (36 + 4)/(10 + 1). That axis with helical

rotations by 99� maps four i-helices onto each other (Fig. 5c).

Here each i-helix contains ten residues. In contrast to 36/10,

the axis 40/11 is expressed by a periodic decimal fraction and

corresponds to the symmetry of the {10(2�24)} polytope (Figs.

3b, 3f), defined by the relation (5). The relation (5) implies

that the orbit of the axis 40/11 is the union of the four orbits of

the axis 10/1 (it is approximated by an axis close to the screw

axis 101), which is also a relation between axes of the cylind-

rical approximation of the �-helix. The helix 40/11, ensuring

the existence of the four i-helices, is followed by the helix 44/12

= (40 + 4)/(11 + 1), which is the quadruple of the helix 11/3

(Fig. 5b). It is exactly 11/3 that corresponds to the average

length of observed �-helices in globular proteins (Shulz &

Schirmer, 1979). The one closest to 44/12 is the helix 45/12,

which is a triple helix 15/4 with rotation by 96�.

The observed lengths of �-helices show relative maxima at

7, 11 and 15 residue lengths, thus corresponding to two, three

and four turns (Shulz & Schirmer, 1979). They can be viewed

as a result of separation of 40 = 7 + 7 + 11 + 15 vertices of the

helix 40/11 = 3.63(63), into cycles, situated on two, two, three

and four turns. The substructures, put into correspondence

with such cycles, may be characterized by axes 7/2, 7/2, 11/3

and 15/4. An arithmetic mean of these axes is the experi-

mentally observed 18/5 axis, and its correspondence with the

40/11 axis:

ð7=2þ 7=2þ 11=3þ 15=4Þ=4 ¼ 3:60416ð6Þ ! 18=5;

ð7þ 7þ 11þ 15Þ=ð2þ 2þ 3þ 4Þ ¼ 3:63ð63Þ ! 40=11: ð8Þ

Thus, relationships (8) connect the experimentally observed

18/5 axis of the �-helix (Pauling et al., 1951) with the 40/11 axis

of the ideal (mathematical) �-helix (rotation angles are 100

and 99�, respectively).

A distribution of residues in an �-helix into 11 turns and

local inserting of the {10(2�24)} polytope into the E8 lattice

allows the suggestion of an availability of the symmetrical

construction which can define these conditions. As it happens,

such a construction is the 2-(11, 5, 2) scheme of block design or

biplane (Kostant, 1995; Brown, 2004): 11 numbers from 0 up to

10 are subdivided on blocks by five numbers in each (below,

the number 10 is denoted by the roman numeral X). The

blocks are selected in such a way that each number belongs to

five blocks, each pair of numbers to two blocks, and every

collection of four numbers to one block only. An auto-

morphism group (of order 660) of the biplane is the group

PSL2(11), a limiting group of four special groups PSL2(p),

p = 3, 5, 7, 11 determined by Galois (Conway & Sloane, 1999;

Kostant, 1995; Brown, 2004).
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Figure 4
(a) A hexagonal network with the marked strip having a width of six unit
edges of a hexagon; the white circles are the centres of regular hexagons.
The white lines, where the centres of hexagons are positioned, constitute
the flat development of a helix with a pitch H ’ 2(31/2) (double hexagon
height) and a radius R. The black lines within the strip of length 2�r ’
4.54 represent the flat development of a helix with a pitch h = H/2. There
are 40/11 black circles for every turn of the helix. (b) The dark-grey circles
are centres of hexagons of the locally transformed hexagonal lattice,
between which the dark-grey triangles are situated. They are the common
vertices of pairs of light-grey triangles, the midpoints of whose edges
contain light-grey and grey circles. The lines joining the light-grey and
grey circles of adjacent chains contain white and black circles. The union
of the circles nearest to each other determines the flat development of an
�-helix, whose 13 consecutive vertices are marked by numbers.



Let us distribute 11 blocks of biplane so that the 55 numbers

contained in them form a matrix B of 11 rows and five

columns, presented in Fig. 5(d). In the first column

1; 2; 3 . . . 9;X; 0 form the sequence of positive integers which

are indexing 11 rows. After skipping the first column there

remains the W matrix of size 11� 4. The third, sixth, ninth and

0th rows of the W matrix contain the number 1, its skipping

leaves these rows with three numbers in each and distributes

40 elements of the W(a; b) matrix into 11 rows. These 40

elements W(a; b), a = 1; 2; . . . ;X; 0; b = 1, 2, 3, 4 are distrib-

uted between four Wi subsets of the matrix (ten for each):

Wi ¼
P
n;m

Wððnþ 3m	 �m3Þ;

ðiþmÞ ðmod 4ÞÞ; ð9Þ

where (nþ 3m	 �m3) is the row

number, and (iþm) (mod 4) is the

column number in the W matrix, i = 1,

2, 3, 4; n = 1, 2, 3; m = 0, 1, 2, 3; �m3 = 1

for m = 3 and 0 for m 6¼ 3 (Fig. 5d). The

rows of the W matrix are in one-to-one

correspondence with the turns of the

cylindrical plane development of the

helix 40/11, and i-sets (9) to i-helices, i

= 1, 2, 3, 4 (Figs. 5c, 5d); therefore, at a

combinatorial level (without metrics)

the substructure W of a biplane B may

be identified with a flat development

of a cylindrical approximation of an

�-helix.

In fact, in the biplane any four or

three numbers belong to just the given

block; therefore, the presence of three

or four numbers in any row of the

matrix 11 � 4 (and, therefore, the

number of C� atoms in a turn) is stable

in the combinatorial sense. The

skipped unit numbers subdivide 11

rows of the matrix W into superblocks:

11 = 3 + 3 + 3 + 2; at the same time, in a

superblock of three rows there will be

11 numbers (11 residues by three

turns), which correspond to the already

mentioned median length 17 Å for

observed lengths of �-helices in glob-

ular proteins. Without the three top

block ones, there are 30 numbers in the

eight remaining rows of the W matrix,

thus corresponding to the 30/8 = 15/4

axis. Within a superblock there are no

intersections of rows by two numbers,

which ensures its combinatorial stabi-

lity. At the same time, rows from two

different superblocks intersect by two

numbers, which allows one to consider

the possibility of glueing an �-helix

through atoms corresponding to these common pairs of

numbers.

The helix 10/1 is common to the channels 40/11 and 30/11

[determined by (5)], which is possible if they are both defined

according to the same law. In fact, by analogy with the defi-

nition of the cylindrical flat development 40/11 from the

biplane B, the flat development for 30/11 may be obtained

from B by skipping the first two columns and three unities 1 in

the remaining columns. At that, the remaining 30 = 55 	 2 �

11	 3 numbers may also be distributed into three ten-element

subsets of the form (9).
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Figure 5
(a) The structure of an �-helix, pendant groups are designated by the letter R, hydrogen bonds are
shown by a dotted line (adapted from Fig. 7-5 in Finkelstein & Ptitsyn, 2002). Dark-grey, grey, light-
grey, white and black balls represent, respectively, C�, C0, N, O and H atoms in the packing. (b) The
development of a locally cylindrical approximation of the �-helix having the 36/10 axis shown in Fig.
5(a). Forty-four C� atoms are disposed on 12 turns designated by roman numerals. Atoms with equal
numbers are identified. Each turn designated by the thick line contains three atoms, each of the
remaining turns contains four atoms. Atoms i and i + 4 belong to one of the four dotted straight i
lines, i = 1, 2, 3, 4 (taking into account for identifying the vertical edges of the stripe). (c) The
development of a locally cylindrical approximation of the �-helix having a 40/11 axis. The
development is inserted into the lattice with basic vectors e1 and e2 and the sublattice with basic
vectors V1 and V2. (d) Biplane 2-(11, 5, 2) as the matrix 11 � 5 with 11 lines by five numbers in each
line. The first column of biplane numbers is the number of turns on the development in Fig. 5(c).
Skipping 1 out of the matrix corresponds to the distribution of C� atoms over turns and i straight lines
in Fig. 5(c), i lines are marked as thick, thin, dashed and dotted ones. The numbers corresponding to
straight lines i = 1, 2, 3, 4 are shown as bold, primed, underlined and italic, respectively.



4. The a-helix is the structure determined by the helical
joining of tetrahedra

In addition to the helical 18/5 rotation (close to 40/11), basic

parameters characterizing the structure of an �-helix are (in

Å): pitch h = 5.4 and radius r = 2.3 (Shulz & Schirmer, 1979).

The relation h=r ’ 2.349 satisfies the condition (4), confirming

the necessity of application of the formalism being developed

here in order to derive structural parameters of the �-helix.

Let us put the origin of coordinates (0, 0) into a point v0 of

the plane development of a cylindrical approximation of the

�-helix (Fig. 5c). According to (7), the point v0 is connected to

the point v1 via the vector V1 with coordinates 2�r/(40/11),

h/(40/11), and v0 is connected to v5 by the vector V2 with

coordinates 2�r/10, 4(h/(40/11)). The angle � between those

vectors is determined by the relation

cos� ¼ ð1þ ð10C=ð11þ C2ÞÞ
2
Þ
	1=2; ð10Þ

where C = 2�/ccr = ctan�cr, ccr = h/r’ 2.400 in accordance with

(4). For c ’ 2.46 ’ 61/2 one obtains for the vector length the

relationship V2 = (3/2)V1, thus permitting us to define the

vectors with the same length e1 = (1/2)V1 and e2 = (1/3)V2 and

the angle � ’ 55� between them. Considering the vectors e1

and e2 as the basis, it is possible to construct a lattice {e1, e2},

which will contain a sublattice {V1, V2} with basis vectors V1

and V2. For h = 5.4 Å the strip {V1, V2}� of the lattice {V1, V2}

almost coincides with the flat development of a cylindrical

approximation of the �-helix for C� atoms (Fig. 5c). Vectors

(in particular, the Darboux vector) giving the curvature and

the torsion of the curve (Dubrovin et al., 2001), approximating

the C� helix, are in correspondence with elements of the

algebra g2, but are not in the basis of its lattice. Using the

formalism mentioned in Dubrovin et al. (2001), it can be

shown that the strip {e1, e2}� corresponds to a system of vectors

determined by a Chevalley group of type G2, representing a

generalization of a group of type G2 over local and commu-

tative rings (Humphreys, 1975; Bunina, 2012). Thus, the

channel 40/11 of a polytope allows us to define a strip of

hexagons, embedded into the lattice A2, and then to construct

a strip of the lattice {e1, e2}� which contains the sublattice

{V1, V2}�, corresponding to a flat development of a cylindrical

approximation of the �-helix for C� atoms.

In the transition (1) of the sphere S3 to the universal

covering
P

j Sj
2 over bouquet S1

[ S2, the circle S1 serves as

the base and the sphere Sj
2 the jth fibre (Fig. 1c). Sphere Sj

2 is

the universal covering of the projective plane; therefore, the

simplicial complex �j which corresponds to the jth layer may

be determined by the finite projective geometry PG (2, n). The

incidence graph of PG (2, n) is a regular map on the torus

{6, 3}q,1, and dual to it – the map on the torus {3, 6}q,1

containing seven vertices, 21 edges and 14 triangular faces

(Coxeter, 1950). Skipping from {3, 6}q,1 six edges and four

triangles leads to the irregular map {3, 6}6
q;1 on the sphere that

can be inserted into the lattice A2 (Samoylovich & Talis,

2013a,b). Ten regular triangles of {3, 6}6
2;1 provide all

the vectors of the G2 system (Fig. 6a); therefore, a PG (2, n) is

sufficient to take a minimal finite projective geometry

PG (2, 2). The irregular {3, 6}6
q;1 map corresponds to the

development of the seven-vertex joining of four regular

tetrahedra in a face-to-face mode, representing a simplicial

complex.

Thus, a helix of simplicial complexes may be obtained upon

transition (in a cover over a bouquet) from the base S1 to a
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Figure 6
(a) The map {3, 6}2;1 contains ten triangles of the irregular map {3, 6}6

2;1 in
the rhombus, which is shown by double lines. The triangles 3–5–7 and 2–
4–6 are shown by dotted lines. (b) The development of a locally
cylindrical approximation of the �-helix having the 40/11 axis (Figs. 4b,
5c) as the joining of maps {30, 6}6

2;1. The numbers of vertices of isosceles
triangles {30} coincide with the numbers of regular triangles {3} in Fig.
6(a). The triangles 3–5–7 are common to two neighbouring maps; they are
the dark-grey triangles in Fig. 4(b). (c) Identifying the vertices with equal
numbers of map {3, 6}6

2;1 in Fig. 6(a) determines a seven-vertex face-to-
face joining of four regular tetrahedra with the common vertex 1. Two
such joinings of four regular tetrahedra may be united (as manifolds) by
their common face 3–5–7. Shaded spheres are placed in the interior of 1–
2–4–6 and 1–3–5–7 tetrahedra. (d) The helix packing of the seven-vertex
joining of tetrahedra (collected by their faces of the type 3–5–7), which is
determined by identifying equal vertices of the flat development in Fig.
6(b). White edges delineate the seven-vertex joining of four tetrahedra
which is shown in the bottom part of Fig. 6(c). The black edges join the
black centres of the seven-vertex joining of four tetrahedra and dark-grey
vertices. They form a helix, determined by the 40/11 axis. The white and
light-grey vertices (white and black in Figs. 1c, 6b, 6c) form two other
40/11 helices. The vertices included in the 413 cycle of the �-helix (vertices
of type 1 and shaded spheres in Fig. 6c) are numbered in accordance with
(13) and Figs. 5(a), 4(b). The white dotted line, which closes the 413 cycle,
connects vertices 2 and 12. Atoms O and H disposed on this white dotted
line and realizing the hydrogen bond are not shown. The white dotted line
is parallel to the dotted line connecting the nearest white and light-grey
vertices.



discrete system of points on the helix 40/11, and from the fibre

Sj
2 to the simplicial complex �j:

S1
! h40=11iv0 $ fV1;V2g�;

S2
j ! �j ! PGð2; 2Þ ! f30; 6g62;1  fe1; e2g; ð11Þ

where h40/11i = h40/11|11h/40i is a helical rotation by an angle

of 99� = 11 � 360�/40 with a shift along the axis by 11h/40.

Upon mapping (11), the base point j, where the complex �j is

‘attached’, maps into the node Vj of the strip {V1, V2}�, which is

also the centre of a flat development of the map ({30, 6}6
2;1)j of

ten isosceles triangles (Figs. 6a, 6b). Correspondingly, a

cylindrical approximation of the �-helix with pitch h = 5.4 Å

and radius r = 2.3 Å is determined by the relationships

h40=11ijðf30; 6g62;1Þ1 ffi ðf3
0; 6g62;1Þ1þj;

ðf30; 6g62;1Þj \ ðf3
0; 6g62;1Þjþ1 ¼ f3

0
g; ð12Þ

where the centre of the map ({30, 6}6
2,1)j coincides with the jth

C� atom and the triangle {30} is common to two neighbouring

maps {30, 6}6
2;1. It is formed by the vectors e1 and e2 with an

angle � ’ 55� between them (Fig. 6b).

The simplicial complex ({30, 6}6
2;1)j is a joining of four

tetrahedra sharing a vertex Vj, which represent the simplicial

complex �j from the relationship (11). This is a special

complex since it is inserted (by insignificant deformations)

into an icosahedron, as well as into the Coxeter–Bordijk

helicoid of regular tetrahedra (Figs. 1b, 6c). A face-to-face

joining of two seven-vertex simplicial complexes {30, 6}6
2;1 [

h40/11i{30,6}6
2;1 is the 11-vertex complex (Fig. 6c), which

corresponds to three �-helix turns, forming a superblock of its

development (Figs. 5c, 5d). It may be put into correspondence

with the helicoid 11/3 (Fig. 5b). One of its vertices is the

common point for S1 and S2 in a cover over a bouquet (Fig.

1c). Discarding four points common for S1 and S2 while uniting

according to the law (1), four such 11-vertex complexes allow

one to obtain 40 points, corresponding to the orbit 40/11. Thus,

the relations (11) and (12) determine a packing of simplicial

complexes, satisfying the requirement of topological stability

as well as experimental data concerning the structure of the

�-helix (Shulz & Schirmer, 1979; Finkelstein & Ptitsyn, 2002).

In other words, the structure parameters of an �-helix are

determined by a packing of (almost regular) tetrahedra that

appears upon multiplying (12) a special seven-vertex tetra-

hedra joining by a non-integer axis of helical rotation 40/11

(Fig. 6d).

The C� atom (positioned in a common vertex of the four

tetrahedra joining) is four-coordinated, and it determines

positions of the N and C0 atoms inside the ‘external’ tetra-

hedra of the whole joining at the left and right sides from C�
(Figs. 7–5 in Finkelstein & Ptitsyn, 2002). Such decoration of

the simplicial complex (Fig. 6c) gives rise to formation of the

ith link (N–C�–C0)i of a polypeptide chain and ensures the

assembly of these chains into the �-helix:

	ðN	 ½C� 	 C0Þi 	 ðN	 C� 	 C0Þiþ1 	 ðN	 C� 	 C0Þiþ2

	 ðN	 C� 	 C0Þiþ3 	 ðN	 C�
 	 C0Þiþ4	; ð13Þ

in which C� from the ith complex is linked to C� from the

(i + 4)th complex by the transformation h10/1i = h40/11i4.

Since 10/1 connects the starting and ending C�, the starting N1

and ending C5
0 atoms belonging to the set of five links (N, C�,

C0) must be skipped. The 13-atom cycle of C� atoms is denoted

by square brackets. The carbon atoms (C�)1 and (C�)5 linked

to C1
0 and N5 are tetra-coordinated, a physical bond between

them is impossible, and hence instead of (C�)1 and (C�)5 the

atoms O1 and H5 (also connected with C1
0 and N5) enter in this

cycle. A bond between the atoms O1 and H5 is possible, and it

closes the cycle 413 of 13 atoms, which traditionally char-

acterizes the �-helix (Fig. 5a).

The mapping of a polypeptide chain (13) by a flat devel-

opment of a packing of tetrahedra presents a chain of isosceles

triangles with common vertices C� (Fig. 4b). At the same time,

the atoms C0 and N are positioned on the midpoints of the

bases of these triangles (or in other positions selected by

symmetry in triangles). On each of the lines joining C0i and

Ni+4, i = 1, 2 . . . , there are two positions, selected by the

symmetry of the {e1, e2} lattice and which correspond to

positions of the atoms Oi and Hi+4. According to (12) and (13),

the shortest distance between the C� atoms is determined by

the transformation h40/11i1, and the second distance between

the C� atoms by the transformation h40/11i4 = 10/1. Thus, the

characterizing �-helix 13-vertex 413 cycle is determined by the

parametric h40/11i axis:

413 ¼

([4

i¼0

h40=11iiðN;C�;C0Þ1jN1 ¼ C05 ¼ 0;

ðC�Þ1 ! O1 [ H5  ðC�Þ5 ¼ h10=1iðC�Þ1

)
: ð14Þ

The number 13 in the designation of the cycle as 413 actually

gives the number of atoms in a cycle, while 4 must be deter-

mined as the degree of the axis h40/11i, mapping the ith C�
atom into the (i + 4)th C� atom. Thus, the relationships (12)

determine a helix packing of tetrahedra (Figs. 6a–6d), satis-

fying the requirement of topological stability as well as

experimental data concerning the structure of the �-helix

(Shulz & Schirmer, 1979; Finkelstein & Ptitsyn, 2002).

Within our approach the �-helix corresponds to a

substructure of the {10(2�24)} polytope which is mapped into

an octagonal face of the truncated cuboctahedron. Thus, the

joining of its three closest octagons (Fig. 7a) is in correspon-

dence with a superhelix formed by the �-helices, whose

symmetry is determined by the symmetry of a polytope. A

scheme of the superhelix is shown in Fig. 7(b) (adapted from

Fig. 11-3 in Finkelstein & Ptitsyn, 2002). Within the triple of

�-helices, which is characterized by the axes 40/11 and corre-

sponds to the octagons in Fig. 7(a), there appears a channel,

which is characterized (parametrically) by the axis 30/11 and

corresponds to the hexagon in Fig. 7(a). At the same time,

between pairs of channels 40/11 there are channels 40/9

appearing, which are in correspondence with squares (Fig. 7a).

Similar relations may also be obtained for other superhelices

as joining of �-helices.

Acta Cryst. (2014). A70, 186–198 Samoylovich and Talis � Symmetry of helicoidal biopolymers 193

research papers



5. Constructions defining the symmetry parameters of
DNA structures

Mapping of the symmetry of DNA structures requires inter-

pretation of the double helix as a single object. For instance,

the ends of rods, which join by the helical law, form a double

helix, but a rod is a single object. Two half-turns of each end of

rod arise after rotation of the rod by 180� (Fig. 2b). In order to

describe a joining of two half-turns (as manifolds) from each

helix of DNA structures with the formation of the united

helical system (the M manifold), it is necessary to use a

standard topological operation of taking a connected sum

(Fig. 1b). In particular, such an operation as glueing of a

handle (Dubrovin et al., 2001) is applied in the �-helix for the

assembly of seven-vertex tetrahedra joining. Application of

the said operation plays a special role for the rod structures in

question, because it provides an experimentally established

possibility of bending them under certain angles (Nelson &

Cox, 2004; Morozov et al., 2009). In the structure of DNA the

repeating elements in molecular packings are apparent in

coding features (Nelson & Cox, 2004). In general, such

structures are determined by a helical, scaled, ordered packing

of large molecules; hence, to describe them one must use a

local-lattice packing, which is capable of ensuring the repeti-

tion of molecule (cluster) centres both on each turn, and on

each [similar to (14)] cycle.

A lattice (in the algebraic sense) is not necessarily defined

as a subgroup of n-dimensional real space, generated by n

linearly independent (ordinary) vectors. It is possible to use

complex and quaternion vectors, because, besides whole real

numbers, there are also three rings of whole numbers: Gaus-

sian ones {(aþ ib), a; b 2 Z}, Eisenstein ones ({a + i!),

a; b 2 Z, ! = (	1 + i/31/2)/2} and Hurwitz quaternion ones. In

fact, the E8 lattice may be described as the real part �real = E8

of the Hurwitz lattice in H2; at the same time for Hurwitz’s

one in H the lattice is �real = D4. For the Gaussian two-

dimensional one �real = Z2 is a square lattice and for Eisen-

stein’s one �real = A2 is a hexagonal lattice. Such relations

simplify a transition from using vector manifolds and auto-

morphisms of the E8 lattice to corresponding elements of

polytopes and then to partitioning of the two-dimensional

sphere or torus. Using 24-element groups, represented, as a

rule, by two (differing only by sign) sets of 12 elements, allows

one to use Mathieu groups M24 and M12, which is realized in

this work.

Let us consider the possibility of building some DNA

structures based on a combinatorially (symmetrically) and

topologically stable construction, in which an �-helix is

realized. In view of the above discussion, such a construction

must correspond to the angle of the helical rotation 40/11, a

sequence of polytopes {10(2��24)}, � = 0, 1, 2, from the second

coordination sphere E8; the group PSL2(11), the Chevalley

group of type G2 and the relationship h=r ’ 2.400 of the pitch

of the helix to its radius. In addition to structural features of

the �-helix, this construction must take into account the

double-helix nature of DNA structures and be typical of its

local-lattice packing.

The axis 40/11 maps the triples of C�, C0 and N atoms into

each other, while the atoms belonging to the same triple do

not map into each other. Let us assume that all C0 and N atom

centres are projected onto the helix containing the C� atom

centres, and any two adjacent atom centres are mapped into

each other by the same transformation (with the accuracy up

to a conjugation). The mappings (projected onto a helix) of

the C� and C0, C0 and N, N and C� atoms are in correspondence

with three non-unit involutions in the Chevalley group of G2

type.

As a result of tripling the number of homogeneous

elements, this helix will be mapped onto itself by the non-

integer 120/11 = (40 � 3)/11 axis with a rotation angle of 33�.

The non-integer 120/11 helix axis coincides practically with the

11 = 121/11 axis, having 11 transitive elements per one turn.

For an �-helix the ratio h=r ’ 2.400 corresponds to the

bifurcation point of the catenoid, so it is permitted to define

(after several steps) a helix and, respectively, a double helix

given by the ends of the helix generatrix (Fig. 2b). The

possibility of doubling the number of �-helix elements has

been presented in a previous consideration.

In particular, the subgroup PSL2(11) of the Mathieu group

M11 acts on two orbits [1,11; 1,11] which may be put into
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Figure 7
(a) A truncated cuboctahedron (Fig. 3b) with letters marking out seven
vertices of the nearest to each other octagonal faces. (b) The scheme of
the superhelix composed from three �-helices (adapted from Fig. 11-3 in
Finkelstein & Ptitsyn, 2002) shown as a–b– . . . –g helices and corre-
sponding to octagonal faces in Fig. 7(a). The channels appearing in the
interior of three helices and between �-helix pairs correspond to
hexagonal and square faces in Fig. 7(a). (c) The polyhedron (Fig. 3c) with
22
�24 vertices and 12 heptagons, 24 pentagons, and 8 + 6 hexagons (of two

types) as faces. Three grey heptagons around a hexagon appear by
transforming three octagons in Fig. 7(a). This transformation is effected
by 90� rotations of dotted arrowed edges. Black and white ovals single out
parts of zigzag chains composed from three pairs of pentagons
and heptagons. The ‘north’ pole of the polyhedron is designated by the
letter N.



correspondence to a homogeneous distribution by 11 elements

and one fixed point for each turn of the double helix (Conway

& Sloane, 1999). The construction satisfying all the said

conditions is the A form of DNA (Ivanov & Minchenkova,

1994), for which the ratio of the helix pitch to its radius

(28.6 Å/11.5 Å ’ 2.487) is comparable with the topological

stability criterion value of h=r ’ 2.400 for a single helix. The

significant difference of the A form from other forms of DNA

is a shift of base pairs by 4–5 Å from the helix axis towards its

periphery, which is supposedly related to various configura-

tions of a sugar ring of deoxyribose. Actually, in a certain sense

the A form is topologically (locally) closer to an incomplete

Scherk surface, given by an appropriate Weierstrass repre-

sentation for the local structure of the minimal surface. The

given surface is also characterized by an instability index, but

its formation is also related to additional requirements. In

particular, the conditions of an exterior metric introduction

are broken and there appears a necessity to use functions

representable as a sum of functions of each variable (Fomenko

& Tuzhilin, 1992). Thus, due to the absence of the central part

of this surface, the A form does not belong to the most

topologically stable forms of DNA structures.

By conserving all preceding concepts the use of the S5

subgroup of the M11 group determining the action over the

manifold [1, 5, 6; 2, 10], the said manifold can be associated

with five and six elements on two half-turns of a single helix

(with one fixed point) and two fivers (with two fixed points) on

two half-turns of the second helix. In this case, there appears

the possibility of joining [1, 5, 6; 2, 10] [ [2, 10; 1, 5, 6] of the

half-turns of both helices, which forms the double helix,

containing ten and 11 elements, respectively, in two adjacent

turns of each helix. At that there are 21 elements per two

turns, thus constituted by 10.5 elements per one turn, as is

characteristic of the B form of DNA (Nelson & Cox, 2004).

The A form of DNA, defined previously, has been obtained

by formal tripling of the �-helix via transition from the 40/11

to the 120/11 axis. At that, the second triple helix comple-

menting the first one up to a double helix has been introduced

by combinatorial reasoning. At the end of x4 the possibility

has also been considered of the �-helix tripling by joining of

three �-helices into the superhelix. This superhelix corre-

sponds to three octagons around a hexagon of the polyhedron

{2�24} (Figs. 7a, 7b). In the polyhedron {22
�24} such joining

corresponds to the union of three (grey) heptagons around the

hexagon (Fig. 7c). The polyhedron {22
�24} arises as a result of

the degeneracy discarding (doubling) of the {2�24} polyhedron

vertices. Because of this it can contain a substructure corre-

sponding to the doubled helix. A hexagon, situated at the

north (south) pole of the polyhedron {22
�24}, is in the centre of

a zigzag-like equatorial union of three heptagons (and three

pentagons between them), not sharing common vertices with

them. Two such zigzag unions around the axis, joining the

north and south hexagons, appear at the equator of the

polyhedron {22
�24} out of the white and black zigzag-like

chains (Fig. 7c). Upon selecting on a sphere ‘the north and

south’ discs (around the north and south hexagons) and

subsequently glueing the discs, while allowing for a local

cylindrical approximation of the minimal surfaces in question,

two equatorial zigzag-like chains may be put into correspon-

dence with half-turns of two helices, forming the double helix

(Figs. 7b, 8b). Upon mapping a polytope onto a polyhedron,

two points of a polytope correspond to a single point of the

polyhedron (Mosseri et al., 1985); hence lifting degeneration in

E3 must correspond to the appearance of two additional half-

turns of two helices.

Acta Cryst. (2014). A70, 186–198 Samoylovich and Talis � Symmetry of helicoidal biopolymers 195

research papers

Figure 8
(a) The mapping of the {3, 4, 3} polytope onto a plane with the polytope
vertices as elements of a nonprincipal lattice (adapted from Fig. 8.1 in
Conway & Sloane, 1999). The colour shows the subdivision of 24 vertices
onto three orbits of an eight-cyclic group and onto six orbits of a four-
cyclic subgroup of the eight-cyclic group. (b) The flat development of the
{22
�24} polyhedron as a 96-vertex subdivision of the flat development of a

cube into 5-, 6 - and 7-gons. Black (white) ovals single out a zigzag chain
composed from three pairs of pentagons and heptagons. The congruent
chains are denoted by black–grey and white–(light-grey) ovals. These
chains are within the central strip shown by black lines, which
corresponds to the ‘equatorial’ strip of the polyhedron in Fig. 7(c). The
glide reflection plane is shown by a dotted line.



A lattice over the ring of cyclotomic integers of the form

Z[	], where 	 = exp�i/4, 	 2 = i and 	 4 = 	1, is a variant of the

real lattice D4; hence 24 vertices of the projection of the

{3, 4, 3} polyhedron onto a plane may be represented by

elements from Z[	] (Fig. 8a). The latter may be identified with

the 24 vectors D4 for the first and second coordination spheres.

The two given classes of 24 vectors are included in the factor-

manifold D4/3D4, which (beside the zero class) also contains

32 classes with three vectors in each (Conway & Sloane, 1999).

In general, in the classes mentioned there are {2��24} vectors,

which may be put into correspondence with vertices of poly-

hedra {2� �24}, � = 0, 1, 2. According to Samoylovich & Talis

(2009) the flat development of the {22
�24} polyhedron may be

obtained from 96-vertex partitioning of the flat development

of a cube into 5-, 6- and 7-gons. It can be shown that this

development may be obtained by projection onto a plane

honeycomb {3, 4, 3, 3}, which contains polytope {3, 4, 3} as a

cell (Fig. 8). There is a glide reflection plane {m|2a}1/2 going

through the midpoints of edges of the Petri polygon of the

cube, making the six heptagons contained in them coincide. If

one draws a glide reflection plane {m|2a}1/4 going through

quarters of edges of the Petri polygon and parallel to the given

plane, it will bring to coincidence the centres of three penta-

gons and three heptagons. Joining of such polygons closest to

each other, forms zigzag lines out of alternating pentagons and

heptagons: black–black (black–grey), white–white [white–

(light-grey)] chains (Fig. 8b). Thus, we get a flat development

of equatorial zigzagged chains of the polyhedron {22
�24},

which correspond to a topologically stable local cylindrical

approximation of the minimal surfaces and subsets of the local

lattice Z[	].
The equatorial zigzagged chains considered above deter-

mine the flat development of a double helix, where for each

turn there is a zigzag joining of six pairs of elements not

congruent to each other (Fig. 9a). The said six pairs form a set

of 12 elements with simultaneously six imprimitive two-

element sets (heptagon–pentagon pairs) and two six-element

sets (six heptagons and six pentagons), which are denoted by

the symbol 6 � 2. The two turns of the double helix are in

correspondence with two orbits [6 � 2, 6 � 2] where the

subgroup 2 � S5 of the group M12 is acting. In a zigzagged

chain of one helix each heptagon is connected to a pentagon

and vice versa. A similar type of connection is preserved also

while linking pentagons and heptagons closest to each other

from different helices. Summing up the above, it is possible to

assert that putting into correspondence with pentagons and

heptagons of the flat development of the double helix the syn-

and anti-conformations of the bases (Saenger, 1983), one

obtains a scheme flat development of the Z form of DNA

(Figs. 9b, 9c).

6. Conclusion

While the exact geometry of biological helices may appear

complicated, their topology is determined simply and directly

by steric considerations. The different types of structures in

proteins, primary, secondary or tertiary, are related to close-

packed structures in one, two or three dimensions (Sadoc &

Rivier, 1999). The densest packing of regular tetrahedra is

achieved in a four-dimensional polytope {3, 3, 5}, which is

determined by an eight-dimensional lattice E8. The diamond-

like union of the two polytopes {3, 3, 5} – polytope {240}

(Coxeter, 1930) starts the sequence {10(2��24)}, � = 0, 1, 2, of

polytopes determined by the second coordination sphere of

E8. We have shown that structural parameters of the �-helix

are determined by helix packing of seven-vertex unions of

tetrahedra, which correspond to helical axis 40/11 from poly-

tope {10(2�24)}. This tetrahedral packing determines trian-

gular packing on the surface, which corresponds to the

bifurcation point for a minimal surface given by Weierstrass

representation and satisfies the condition that the index of an

unstable surface equals zero. The approximation of this

surface by a cylindrically similar surface determines one-to-

research papers

196 Samoylovich and Talis � Symmetry of helicoidal biopolymers Acta Cryst. (2014). A70, 186–198

Figure 9
(a) The cylinder development of a double helix as part of the
crystallographic tiling of zigzag chains, which is defined by the central
strip of flat development in Fig. 8(b). Half-turns of helices are shown by
thin and solid lines. Zigzag lines determine two left (relative to Figs. 5a,
5b) helices containing six pairs of pentagons and heptagons. In each pair a
heptagon (pentagon) corresponds to a nucleotide in a syn-conformation
(anti-conformation) in Z-form DNA (Saenger, 1983). (b) The repeated
unit of the left-helix Z-form DNA is two adjacent nucleotide pairs; one
pair is marked by an oval. The helix rotation angle is equal to 	9� or
	51�, which is dependent on the realization of the contact type (anti–syn-
conformations or syn–anti-conformations) in the given point (adapted
from Saenger, 1983). (c) A model of the Z form of DNA; the zigzagged
double helix is shown by thick black lines. Two neighbouring nucleotide
pairs are marked by an oval. (Adapted from a figure by Richard Wheeler,
nickname Zephyris.)



one correspondence between the considered tetrahedral

packing and close-packing of triangular maps {30, 6}6
2;1

embedded in a triangular lattice rolled on a cylinder. Thus, we

defined two-dimensional and three-dimensional ideal (math-

ematical) helices, which have exactly the topology of the

�-helix. Within our approach, joining of �-helices forms a

superhelix whose symmetry is determined by the symmetry of

the polytope {10(2�24)}.

This approach, which we are developing, shows that the

necessary condition of stability and reproducibility of the

biological structures studied is their correspondence to the

unique system of constructions of algebraic geometry and

topology. The mathematical description of the world is based

upon a delicate interplay of the continuous and the discrete

(Arnold, 1984); therefore the given condition determines the

possibility of assembling atoms (molecules) according to

topological properties of the real physical world and the

conditions for existence (being embedded in it) of finite

discrete ordered structures. As predicted by a theory of

catastrophes (Arnold, 1984), the formation of such structures

corresponds to processes of lifting configurational degenera-

tion, and state stability – with the existence of a bifurcation

point. We have mainly discussed the �-helix, but there are

other biopolymers related to this approach, for instance, the

topology of the A, B and Z forms of DNA determined by

special helix local-lattice packings and symmetries of the

{10(22
�24)} polytope. Furthermore, in the case of DNA struc-

tures nature apparently makes a ‘double check’ with respect to

the possible effects of crystallization – the local-lattice prop-

erty is used for lattices defined over rings of algebraic whole

numbers and not just over the customary ring of integers.

DNA structures not only contain the necessary functional

code (a four-letter code with three-letter words, which corre-

sponds to a requirement for a non-integer number of elements

per turn), but also realize a very important transition from

local-lattice atomically generated structures to local-lattice

packings of molecules. Scale invariance of the system (a most

general type of fractal transformation) is set into action by a

certain local transformation (transition), where the repetition

(local atomically generated lattice property) in chains and the

number of elements transforms into the characteristic of the

axis of a helicoidal rod, and then also into elements of a

helicoidal local-lattice packing.

Ignoring local periodicity leads to formal breakdowns of the

basic paradigm of biological reductionism (Sverdlov, 2006),

because there have been cases, experimentally observed, when

different proteins or the same protein with varying functions

were coded by the same gene with a certain sequence of bases.

This irregularity could have been ignored, were it not for a

characteristic partition of the original DNA helix into separate

subsystems, for instance, when reading the information. An

important characteristic of DNA is the virtual double half-turn

nature (which defines a ‘building block’ of the double helix as

a union of two half-turns of each helix) of the turn of the helix.

Worth noting also is the virtual half-turn nature of each turn,

as well as a possible role of a hidden triple period in relation to

using a three-letter basis (for a four-letter alphabet), when it is

exactly three nucleotides that determine the type of amino

acid in the formation of polypeptide chains. The fourth

nucleotide cannot be unique due to its structural features, but

it is necessary to take into account the role of RNA structures

in changes of DNA.

At the present time, structural classification of proteins is

based on bioinformatics, which uses possibilities afforded by

computer enumeration and allows one to directly compare

proteins not listing the constructions of algebraic geometry

and topology that determine symmetry (Finkelstein & Ptitsyn,

2002). The formalism used in this work (whose detailed

mathematical foundation is presented in Samoylovich & Talis,

2012a,b, 2013a,b) allows one, before resorting to real or

computer experiments, to discover symmetry regularities of

the structure of certain classes of biopolymers, which deter-

mine the possibility of a priori selection of topologically stable

structures and symmetry classification of biopolymers.

It would be of interest to understand what new perspectives

in the biophysics of DNA structures can occur (for example,

on the part of evolution and functional changes of the

genome) when the established topological features of their

structure are taken into account, in particular, the stability of

such systems and their subsystems, as well as substitution

mechanisms for packing elements. Note also such features as

an interconnection of local cylindrical nature with the

frequently used cylindrical approximation; a special role of the

local-lattice property and bifurcations in stability considera-

tions; and the necessity to take into account parametric

properties of non-integer axes and the virtual double-half-turn

nature of a turn of the helix. In fact, the latter two char-

acteristics undoubtedly change upon transitions from a state

of a unified two-helix system toward separate one-helix frag-

ments, for instance, upon methylation of nucleotide pairs.

Finally, it should be established which molecular constructions

correspond to special variants of the resulting surface, repre-

senting a union of the helicoid and the catenoid in the form of

the helicoid wound over the catenoid.
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